
www.bezem.de

July 2020

Processor Self-Tests
1

Processor

Self-Tests

TESTING CORRECT OPERATION

OF A PROCESSOR

FOR SAFETY IMPLEMENTATIONS

Johan Bezem

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
2Swift Act #concept presentation

Target Audience

• Embedded Developers with:

– low-level ambitions

– a basic understanding of assembly

programming

– a basic understanding of logic design

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
3Swift Act #concept presentation

Program

• Introduction

• ISO 26262 and ASIL

• Why do we need a processor self-test?

• Limitations checking hardware by software

• Checking the registers

• A special register: Processor flags

• Checking instructions

• Example: Half-adder

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
4Swift Act #concept presentation

Introduction

• Johan Bezem, freelance developer (1990-)

• C programming experience since 1984

• Relevant efforts:

– Two Basic-compilers for ZX Spectrum, written

in Z80-assembler, 1983-1984

– A pre-emptive real-time multitasking kernel,

written in C/assembler, 1991-1994

• Assembler experience since 1978

• Written PSTs for 3 different processors

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
5Swift Act #concept presentation

ISO 26262 and ASIL

• The ISO standard defines safety levels

• Basic processor checks are done in the

factory

• During life-time, a single-processor

implementation has to check itself to

detect deteriorations in operation

• This shall be done before anything safety-

related is executed

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
6Swift Act #concept presentation

Limitations

• Using software to check the hardware is

like Munchhausen

• Software is far from perfect

to test its own processor,

but it’s the only method we

have at our disposal

• We shall limit untested dependencies!

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
7Swift Act #concept presentation

Limitations (2)

• We shall not use RAM – at all

Not even the stack!

• We shall start at the very beginning of

operations, immediately after each RESET

• The principle shall be “Test before use”

• Where that is not possible, limit its use to

the absolute minimum

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
8Swift Act #concept presentation

Faults

Possible hardware faults:

• Shortcut to GND

• Shortcut to Vcc

• Open connection

• Shortcut to neighboring signal line

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
9Swift Act #concept presentation

Full-Adder

A

B

Cin

Cout

S

S = (A ⊻ B) ⊻ Cin

Cout = A ∧ B ∨ Cin ∧ (A ⊻ B)

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
10Swift Act #concept presentation

What type of ALU?

• Look at execution times for 8/16/32/64-bit

addition/subtraction to deduce the ALU

width

• Look at flags like AC (auxiliary carry), N

(negative result) to guess at the possible

ALU operations

• Look at execution times for multiplication

and division to see if it’s part of a

dedicated circuit, or micro-coded

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
11Swift Act #concept presentation

Testing registers

• Test with 0x5555 and 0xAAAA

• Use different opcode families for load and

test, if possible

• Covers all four faults

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
12Swift Act #concept presentation

Testing flags

• Some flags change upon normal

operations

Examples: ADD, SUBC, MULU

• Others are static;

Examples: bank selection, interrupt enable

• Very processor dependent

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
13Swift Act #concept presentation

Flags - examples

Setting Z, C and AC to zero:

MOV A, #0X01

CMP0 A

Setting Z, C and AC to one:

MOV A, #0X01

ADD A, #0XFF

[Make sure to check the processor manuals]

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
14Swift Act #concept presentation

Testing instructions

• We do not know how the instructions are

implemented in silicon

• We have some hints:

– The flags modified by the instruction

– The number of clock cycles needed per

execution – and fixed or variable

– The (deduced) width of the ALU

• And, more generally, the hardware

development manual

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
15Swift Act #concept presentation

Testing instructions (2)

• Increment is the same as adding #0x01

• ADD is the same as ADC with C = 0

• If we have a NEG instruction (creating a 2s-

complement), we can assume that SUB is

using the same logic gates as ADD

• CMP is the same as SUB, without storing

the result

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
16Swift Act #concept presentation

Testing instructions (3)

• Test multiplication with primes – avoid

silicon optimizers

• Test division with the same primes, but

add a constant to avoid a zero remainder

• Ignore composite instructions

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
17Swift Act #concept presentation

Instruction examples

MOVW AX, #0X8013 ; -32749

MOVW BC, #0X8031 ; -32719

MULH ; = +1 071 514 531

CMPW AX, #0X03A3 ; = 0X3FDE_03A3

SKZ

BR L_ERROR

MOVW AX, BC

CMPW AX, #0X3FDE

SKZ

BR L_ERROR

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.integers.co/number/32749.html
https://www.integers.co/number/32719.html

www.bezem.de

July 2020

Processor Self-Tests
18Swift Act #concept presentation

Testing addressing

• We need one reliable (=tested!) location in

memory available for our tests

• We use one addressing mode only to test

the location, similar to testing a register

• Then all possible addressing modes are

used to check the results as well

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
19Swift Act #concept presentation

Addressing example

; Set the initial value

MOVW S:L_LOC, #0XAAAA

…

; Check

MOVW HL, #LWRD(L_LOC)

MOVW AX, [HL]

CMPW AX, #0XAAAA

SKZ

BR L_ERROR

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
20Swift Act #concept presentation

If we have time left

• Using sentinel codes to register results

• Using hamming distance 75%

• Using 0xF5 for TRUE, 0x9A for FALSE

• Where to store the result

• What to do in case of an error

https://creativecommons.org/licenses/by-nc-nd/4.0/

www.bezem.de

July 2020

Processor Self-Tests
21Swift Act #concept presentation

Thank You!

Provided under a Creative Commons

BY-NC-ND 4.0 International license

• Attribution

• Non-Commercial

• No-Derivatives

Author:

Johan Bezem

t: +49 172 5463210

m: administration@bezem.de

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:administration@bezem.de

